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Transmission-Line Properties of a Strip Line
Between Parallel Planes

HAROLD A. WHEELER, FELLOW, IEEE

Abstract—The subject is a strip line sandwiched in dielectric between
parallel planes (commonly termed “stripline”). In the manner of the
author’s earlier papers relating to a different type (1964, 1965, 1977), all
the significant properties are formulated in explicit form for practical
applications. This may mean synthesis and /or analysis. Each formula is a
close approximation for all shape ratios, obtained by a gradual transition
between theoretical forms for the extremes of narrow and wide strips. The
effect of thickness is formulated to a second-order approximation. Then
the result is subjected to numerical differentiation for simple evaluation of
the magnetic-loss power factor from the skin depth.

The familiar derivation for a thin strip (in terms of elliptic integrals
K’/K) is obtained by a simple algorithm of binary stepping with no
reliance on tables. This is susceptible of any degree of approximation in
closed form and is reversible for synthesis or analysis. It is used to verify a
simple empirical formula which is more convenient for differentiation.

In the transition region between the extremes of narrow and wide strips,
the effect of thickness is computed by conformal mapping and numerical
integration (in place of elliptic integrals). From this reference, a simple
empirical formula is verified.

Graphs are given for practical purposes, showing the wave resistance and
magnetic loss for a wide range of shape and dielectric. For numerical
reading, the formulas are suited for programming on a small digital
calculator.

I. INTRODUCTION

NE FORM of strip line is suited for the highest

degree of refinement in a printed circuit. It is the
familiar symmetrical type made of a printed strip sand-
wiched in homogeneous dielectric between parallel planes.
The symmetry and the planes provide complete shielding.
It is distinguished from the strip near a single plane
(termed “microstrip”) which is half-shielded.

The purpose of this article is to present some improved
formulas and graphs similar to those recently published
for the strip near one plane [3]. They include not only
wave resistance (so-called “characteristic impedance”) but
also the losses. The effect of strip thickness is simply
formulated to enable the evaluation of magnetic loss.

In the vernacular, this type of line is termed “stripline,”
a term which is not distinctive.

Because the subject line is symmetrical and 1s imbedded
in homogeneous dielectric, its properties can be stated in
simpler form. They are presented in formulas and charts
which are complete for a strip of any width and moderate
thickness.

As in the preceding article [3], the principal component
of dissipation is usually the magnetic power factor (PF or
1/ Q). It is strongly dependent on the strip thickness. This
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loss PF can be evaluated with the aid of the
“incremental-inductance rule” published by the author in
1942, Other authors have applied this rule to the subject
line [7] but the present approach offers some simplifica-
tion in computation.

As before, we shall consider only the lowest mode of
wave propagation in the line.

After a list of symbols, the configuration will be defined
and the scope of this article will be indicated.

II. SymBoOLS

MKS rationalized units (meters, ohms, etc.)

k =dielectric constant of sheet of material sep-
arating the strip and the ground plane.

R, =377=1207 =wave resistance of a square area
of free space or air.

R =wave resistance of the transmission line

formed by the strip between parallel ground
planes (of perfect conductor) filled with di-
electric (k).

R, = R without dielectric (k=1).

Ry = R, subject to skin depth () in real conductor.

R/R, =1/Vk =speed ratio in dielectric (k) relative
to free space or air.

r =Vk R/R,=normalized R.

w =width of strip conductor.

h =height (separation) of strip from each ground
plane.

t =thickness of strip conductor.

w’ =width of an equivalent thin strip.

Aw =w'—w=width adjustment for thickness.

0 =skin depth in the conductor.

P =1/Q=magnetic power factor (PF) of strip
line.

P =p+08/h=ph/8=normalized p.

e =2.718 =base of natural logarithms.

exp x = e”*=natural exponential function.

In x  =log,x =natural logarithm.

acosh x= anticosh x= cosh™ lx.
atanh x= antitanh x = tanh™ lx.

III. A Strip LINE BETWEEN TwWO PARALLEL

PLANES

Fig. 1(a) shows the cross section of the subject line. The
“practical” parameters correspond to the preceding article
[3]. They are the wave resistance (R) and the dimensions
(w,h,t). Here again the thickness is featured, and the

0018-9480/78 /1100-0866$00.75 ©1978 IEEE



‘WHEELER: TRANSMISSION-LINE PROPERTIES OF STRIP BETWEEN PLANES

© r //’%/ STRIP__ | _i-s t
—T
hr I
v e

®)

A strip line between parallel planes. (a) Rectangular cross
section. (b) Thin strip of equivalent width.

Fig. 1.

equivalence between a practical strip and a wider theoreti-
cal thin strip (perfect conductor with thickness approach-
ing zero). Fig. 1(b) shows the latter. The equivalence is
described in terms of the width adjustment (Aw).

Of particular interest is the well-known wide-strip ap-
proximation indicated in Fig. 1(b). The edge effect of a
wide thin strip between parallel planes is highly localized
so it can be described by one number. This effect is
designated by

w'=w+Aw'=w'+ g In 16 =w"+0.88A.

(1)

This greater width would give the correct wave resistance
(R) on the assumption of uniform field within this width
and zero outside. The effective width is less to the extent
of interaction between the field distortions at the opposite
edges. This interaction is small if the width exceeds the
height (w/h>1) and will be expressed as another term.

For evaluation of the magnetic PF, the skin effect is
indicated in dashed lines. These boundaries are recessed
by 1/2 the skin depth (8/2) so they indicate the actual
center of current. The actual boundary is the theoretical
current center in a perfect conductor. The change between
one and the other is involved in the computation of the
magnetic PF. It is assumed that all conductive boundaries
are nonmagnetic and have equal conductivity and skin
depth.

Iv.

As in the preceding article [3], the thrust of this article is
to enable explicit synthesis of a line to meet some specifi-
cations. The wave resistance (R) is related to the dielectric
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constant (k) and the shape. On the other hand, the mag-
netic PF can be decreased by increasing the size, while the
shape has a lesser effect. The PF is usually a tolerance
rather than a requisite. The wave-speed. ratio is taken not
to be specified, but is determined by the choice of the
dielectric.

Some graphs are introduced here, for reference in vari-
ous sections. They present the relations needed for the
purposes of practical design, and can be read close
enough for ordinary purposes. The formulas to be given
are intended as an alternative to the graphs, and also to
give further insight into the relations. The formulas are
designed for programming in a small digital calculator
such as the HP-25 or HP-97.

Fig. 2 is a graph of the wave resistance of a thin strip. It
is made from the algorithm of binary stepping. The wave-
speed ratio (relative to air or free space) for any width
ratio is equal to the ratio of wave resistance with and
without dielectric (R/R)).

Fig. 3 is a graph of the thickness effect on the wave
resistance without dielectric. It is a small effect with
respect to wave resistance but has a greater effect on the
magnetic PF. This is generally similar to the first-order
effect of thickness as previously stated [3] but is refined
and extended to include the second-order effect in some
degree.

Fig. 4 is a graph of the normalized magnetic PF (P=p
+38/h) as evaluated from the thickness effect. The mag-
netic PF is independent of the dielectric and its normal-
ized value is independent of the size. The thickness
parameter (¢/h) is chosen as being a property of the
laminate, specifically the thickness ratio of the conductive
strip and the dielectric sheet.

New formulas are here presented in the main text
without derivation. Most of them are empirical formulas
providing a gradual transition between narrow and wide
extremes. These are first tested against close approxima-
tions for overlapping narrow and wide ranges. They are
further tested against a set of examples computed by
conformal mapping, which cover the transition region
between the narrow and wide ranges. Some derivations,
not previously available, are given in the Appendixes.
Special emphasis is placed on some formulas which are
“reversible” in the sense that a formula can be expressed
explicitly in a simple form for either analysis or synthesis.

V. A THIN STRIP

As in the preceding article [3], simple “reversible” for-
mulas are given for a thin strip of any width. By this is
meant that an explicit formula for either analysis or
synthesis can be converted to an explicit formula for the
other. This conversion is permitted no complication be-
yond the solution of a quadratic equation. These formulas
are empirical in the sense that they must be tested against
derived formulas that are exact or at least give a close
approximation in some range of shape.

The simple explicit formula is here shown first for
synthesis and then for analysis. The normalized resistance
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Fig. 2. The wave resistance of a thin strip in dielectric between parallel planes.
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Fig. 3. The wave resistance of a strip without dielectric, showing the effect of thickness.

r=Vk R/R.=Vk R/37T; R=rR /Vk =37Tr/Vk  p_30 {1+-:12(16h/7rw’)[(16h/7rw')
@ k

is introduced for convenience.
+ 16}’! 7TW' 2 + 62 7 } . 4
16 V(exp 47r—1)+1.568 \/( /™) ] “)

"/ h .
W/ T (exp 4mr—1) ) The relative error is < 0.005 of R for w'/h <20.




WHEELER: TRANSMISSION-LINE PROPERTIES OF STRIP BETWEEN PLANES

10

869

15

T

ilj

Y

[ SN e s RS A

Fig. 4. The magnetic power factor of a strip, showing the effect of thickness.

This formula is based on the “narrow” approximation.
The first term is retained. The second term is retained in
form and approximately in amount. The latter is based on
the two-wire approximation for a thin strip, as described
in [3]. However, the form is arranged to approximate also
the first term of the “wide” extreme, in respect to its slope
and its zero for infinite width. The second term of the
“wide” is retained in form but not in amount. The two
constants are a slight departure from the following theore-
tical values for the “wide” exireme, to give closer ap-
proximation over the range of most interest:

1.568 instead of 1.522=(72/8)*
6.27 instead of 6.088 =(72/4)%.

From another viewpoint, the two constants are a slight
departure from the following theoretical second terms for
the “narrow” extreme:

1.568 instead of 1.667=5/3
6.27 instead of 6.667=20/3.

It is notable that the above forms are close to a simple
(reversible) formula with these theoretical constants and
the following (rather close) bounds for narrow and wide
extremes:
16 exp2ar _  8/w
n expdmr—1  sinh 27r

T

sh 2z )

This approximate formula is tested against the exact
formula which is derived by conformal mapping. The
latter is related to the ratio K’/ K of elliptic integrals, and
can be evaluated to any degree of approximation by the
method of binary stepping, described in Appendix A.

In Appendix B, there is given the asymptotic formula
for “wide” strips of any thickness. It is a close approxima-
tion if w/h> 1. For wide strips (especially if the thickness

w/h<

p—
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Fig. 5. A wire of square or inscribed circular cross section between
parallel planes.

is small) it is closer than the numerical integration with a
moderate number of intervals.

VL

As an extreme departure from a thin strip, a square or
circular cross section is considered. Some peculiarities of
these shapes are presented in the preceding article [3]. Fig.
5 shows the dimensions between parallel planes, with
equal width and thickness (w=1). As in the case of the
rectangular cross section, the “height” (4) is the separa-
tion of the inner conductor from either plane, so the
spacing between the planes is 2A+¢. This convention is
favored, because the separation places a lower bound on
the magnetic PF.

Here there is no exact formula for all shape ratios.
There is a “narrow” formula for square or circular, but
that does not give the peculiar variation of the PF with
shape. Appendix B gives a derivation for a “wide” square
cross section. The author’s 1955 article [9] gives a deriva-
tion for a circular cross section over the entire range of
shape ratio.

For the square cross section, a simple “reversible” for-
mula has not been found for a close approximation over

SQUARE OR CIRCULAR CROSS SECTION
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the entire range of shape ratio. As will be seen, the more
general rectangular cross section yields an explicit formula
for analysis, which includes the square. That is what is
needed for evaluating the magnetic PF. Synthesis for the
square still requires computation by trial or reading from
a graph such as Fig. 3.

For the circular cross section, the following “reversible”
formula has been designed and tested.

2

w/h= (6)

1/4

(exp 8nr—1)° 1

2.628 (exp 8mr—1)+2

15 2
R=—In[1+1314g+\[(1.314g0+2¢ | (7)
Vk [ ( ) ]

in which

1+

g=(1+2n/w)*~1
(4/7)*=2.628=2(1.314).

The relative error is < 0.005 of R.

For each extreme of “narrow” and “wide,” this formula
matches the first term, while the second term is retained in
form and approximately in amount. The result is a re-
markably close approximation in the transition between
extremes.

If the diameter occupies less than one-half the space
between the planes, the following “narrow” formulas are
simpler and very close (relative error is < 0.005 of R).

Square:

1
W/ M= 54634 exp 2mr —05 ®)
60 . 4/7 60
R=—20In ZLT(142h/w)= —=— In 1.079(1+2h/w).
Vi 1.18 / Vk
)
Circular:
1
h= 1
w/ (7/8) exp 2mr—1/2 (10)
R=601n = (1+2h/w)=601n (1+2h/w)+14.9.
(11

VII. StrRIiP THICKNESS AND THE Loss POWER

FACTOR

The approach here is the same as in the preceding
article [3]. Appendix B herein gives the effect of any
thickness for a “wide” strip between parallel planes. The
effect for a “narrow” strip is the same for one or two
planes.

The present strip between planes is susceptible of sim-
pler evaluation by conformal mapping and numerical
integration, as appears in Appendix C. Therefore, a set of
numerical examples has been computed to cover a wide
range of shape ratios, especially in the transition region
between narrow and wide extremes. From these examples,
the previous formulas for the effect of thickness have been

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-26, NO. 11, NOVEMBER 1978

refined to give closer approximation for moderate thick-
ness.

Here one should note the basis for the width adjust-
ment, as shown in Fig. 1. The strip thickness is associated
with greater separation of the parallel planes in order to
keep the same “height” between the strip and either plane.
This relation is reflected in the exponent (m) of the
“narrow” term in the formulas to be given. Also the
“wide” term is modified to give closer approximation for
greater thickness.

Each formula for width adjustment is presented here, as
before, in terms of the actual width (w) or the equivalent-
thin-strip width (w'=w+Aw).

Aw 1 e

—=—In — (12)
LT L P [ 14 "
4h/t+1 w/t+1.10
or
1 e
LI GO B VL
4h/t+1 w/t—0.26
in which
2 6
m

T 1+1/3n 3+i/h°

The relative error is < 0.015.

This adjustment enables a width conversion either way
between strips with or without thickness. Its small relative
error makes a much smaller contribution to the relative
error of effective width and R. It does relate directly to
the magnetic PF in view of the dependence of losses on
the thickness. As before, the form of this formula gives
asymptotic approximation for narrow and wide extremes,
and a remarkably close approximation through the transi-
tion therebetween.

For loss computation, the actual width and thickness
(w, t) are converted to the width of an equivalent thin strip
(w'=w+Aw). Then the thin-strip formula (R, of w’) can
be used for differentiation with respect to the actual
dimensions (w, A, t).

As indicated in Fig. 1, each dimension is incremented
by *6 and the same formula is used again to obtain Rj.
Then the (small) loss PF is computed by the incremental-
inductance rule:

—1'2;& =1-R,/Ry=InR;/R, 1. (14)

Here again, a normalized form for loss PF is used,
which gives the effect of shape, independent of the size,

frequency, and conductor material. It is normalized to the
height (h).

P=p=+(8/h)=p(h/8). p=P(3/h). (15)

The reference (8/h) is the nominal PF of a very wide
strip.

In computing the normalized PF (P), the value of skin
depth is immaterial if it is sufficiently small to approach
the limiting behavior of the skin effect (which is usually
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present). Also it must not approach the sensitivity of the
computer. In a computer giving 9 decimal places, a fair
compromise is: 6 /h= 0.0001. Then the skin effect is well
represented if all dimension ratios exceed 0.001.

For evaluation of a resonator made of strip line, the loss
PF (or dissipation factor or 1/Q) is usually the most
significant factor. The wave R is incidentally relevant in
the circuit application of the resonator. The loss PF of the
magnetic field is evaluated by the simplest formulas (R,
and Aw without dielectric). For any shape, the value of P
enables a computation of the size of the cross section to
realize a value of p:

h=P§/p=P3Q. (16)

The graphs in Fig. 4 show the loss PF in terms of P for
a wide range of shapes. The common reference is the
height (k) and the thickness ratio (¢/h) because they may
be fixed by a dielectric sheet and a conductive sheet
bonded thereto.

Referring to Fig. 4, the comments in the preceding
article {3]| are generally still applicable. Here are some
comparisons of the present line with that strip near one
plane. The magnetic loss PF is greater for the same
specified dimensions because there is less space occupied
by the field around the strip. Different comments are
applicable to the opposite extremes of width.

A “narrow” strip has the same resistance by [8] but
lesser reactance as measured by the reduction of wave
resistance in free space by this amount:

60 In 7 /2=27.09 Q. (17)

A “wide” strip approaches 1/2 the resistance and reac-
tance, but there is less volume occupied by the field
beyond either edge of the strip. This reduces the ratio of
reactance over resistance so the PF is increased, as ap-
pears on Fig. 4. Typically the increase is around 1/5. For
a “wide” strip, the same levels are approached.

The greater PF, with the complete shielding provided
by the two planes, may not impose a net disadvantage.
The space above the upper plane can be utilized without
restriction. Without the upper plane, more space above
the strip must be kept clear to avoid further losses in the
nearby field. One component of such losses is the radia-
tion that is inherent with incomplete shielding.

The previous article gives procedures for computation
for analysis or synthesis. The present model is much
simpler because the effective dielectric constant is that of
the material, which is specified and determines the speed
ratio.

a) For synthesis from graphs:
(i) specify R and k, h, t; R,=RVk ;
(ii) read w/h from R, on Fig. 3;
(iii) state skin depth;
(iv) read P on Fig. 4; p=P3/h.
b) For synthesis from formulas:
(i) specify R and k, h, ¢; R1=R\/E ;
(ii) compute w’'/h by (3);
(iii) compute Aw/ ¢t by (13); w=w'—Aw.
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¢) For analysis from graphs:
(i) specify k, w, h, t;
(i) read R, on Fig. 3: R=R,/Vk ;
(ii) (iv) same as a).
d) For analysis from formulas:
(i) specify k, w, h, t;
(i) compute Aw/t by (12); w'=w+Aw;
(iii) compute R by (4);
(iv) state skin depth;
(v) compute PF by (14).

The PF computed as above, from formulas (4), (12)
for all shape ratios, has been checked against the “wide”
formula (44), which is much closer if w/h>1. For all
thicknesses up to the square cross section, it is concluded
that the above (d) comes within 0.05 of PF, or within
0.015 of PF if 1/h<0.5.

VIIL

The transmission-line properties of a strip between
parallel planes are evaluated in simple formulas, each one
adapted for all shape ratios. The presence of a homoge-
neous dielectric filling has a simple effect on the wave
resistance and speed ratio but no effect on the magnetic
PF which is usually the principal component of losses.
The latter is stated from the viewpoint of analysis, which
is usually what is needed.

The advance over previous publications appears mainly
in two areas:

CONCLUSION

a) a relation is expressed explicitly by a single simple
formula for the entire range of shape ratio;

b) the width adjustment for thickness is formulated and
used for evaluation of magnetic loss.

Each formula is an empirical relation obtained by design-
ing a gradual transition between known simple formulas
for both extremes of narrow and wide shapes.

All formulas are designed for ease of programming on a
small calculator such as the HP-25 or HP-97. Particularly,
the digital calculator enables the numerical differention
(for loss evaluation) which is here used to realize a great
simplification. While beyond the scope of this article, the
writer would welcome inquiries relating to the programs
for the HP-25 or HP-97, some of which may be available
on request.

In general, the subject line presents problems of evalua-
tion which are simpler than those of a strip near one
plane. Some of the approaches that were developed for
the other form are found interesting and helpful for the
subject line, however simpler.

APPENDIX A
Exact CoOMPUTATION OF A THIN STRIP BY BINARY
STEPPING

For the extreme of either a narrow strip or a wide strip,
a simple formula is known which converges to any degree
of approximation. A simple iterative algorithm of exact
transformations is available for analysis or synthesis of
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any shape ratio in the intermediate range. The algorithm
involves binary stepping of the wave resistance and a
corresponding (nonbinary) stepping of the strip width.
Specifically, one inward step gives the second term of a
converging series, and each further step gives another
term. The transformation for each step is made by the
same simple formula, which is reversible for stepping in
either sense, and is applicable to analysis or synthesis.

The binary stepping will be derived here by a simple
pair of inversions in conformal mapping. The stepping is
accomplished without reference to the actual relation be-
tween the shape ratio and the wave resistance. Then the
latter is introduced to establish one end of the “staircase.”

Fig. 6 shows a pair of cases differing by a binary step of
wave resistance (R). Fig. 7 shows the pair of inversions by
which the corresponding step of shape ratio (w/h) is
derived. The latter will appear in “reversible” form adapt-
able for analysis or synthesis.

The symbols used in this exercise are different in these
respects:

R’, R"” =the (lesser, greater) values of wave resistance
(2R’'=R").

w’, w'’ =the corresponding (greater, lesser) values of
strip width (w’>2w").

h = 7 =reference height.

(/] =half-angle of gap in pair of arcs of a circle.

Fig. 6(a) shows the cross section of any one width
(w'/h) of a thin strip between parallel planes. Fig. 6(b)
shows the strip of the lesser width (w”’/h) to be derived.
The wave resistance is doubled (R’ X2=R").

Fig. 6(c) shows the mapping of one strip onto the upper
and lower half-planes of a balanced strip line which
therefore has double the resistance. The mapping function
is £ Vexp as indicated. The lines of the parallel planes
are folded out to form a single line and the strip is imaged
to form a balanced pair.

Fig. 6(d) shows the mapping of the other strip and its
shields onto a vertical line by the exponential function as
indicated. The shield becomes the lower half of an infinite
line. The wave resistance is unchanged.

Fig. 7 shows the inversion of the strips of different
widths onto the same arcs of a circle, thereby establishing
the relations for 2R’=R"”. The arcs are symmetrical and
are separated by an angle (28) on the circle.

Comparing Figs. 6(c) and 7(a):

tan = exp —w’'/4.
Then comparing Figs. 6(d) and 7(b):

expw”/2 _ 1/tan 20+ tan 26
exp —w”/2 tan 26

exp w” =(1/sin 20)°

(sin 20)*=exp —w”; (cos20)’=1—exp —w"

’ 2
(tan 20)*= 1” _[2exp —w/4
expw’—1 l—exp—~w'/2
=(1/sinh w’ /4)?
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Fig. 6. Description of strip lines of related widths.

1/tan 8

17tan 28

—tan 26

@

Fig. 7. The circular arcs related to balanced and unbalanced strip lines
by inversion.

(®)

exp w” =1+ (sinh w’/4)*=(cosh w’ /4)?
exp w”/2=cosh w’'/4
w”=2In cosh w' /4

w T

—h——; In cosh 27 (21)

=%%—%m 2W,. (22)
1+ exp—’—w

2 h
This is the transformation for double resistance. The
second form is preferred for understanding and computa-
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tion. The first term is 1/2 the width, which is the principal
term for wide strips. The two terms have a small dif-
ference for narrow strips, giving the asymptotic form:
..W_N _ ( lv_l )2<< 1
hoo\4n) T

One-half the resistance can be obtained by the reverse
transformation, which is easily stated from (21):

(23)

’ 17

w4 T W
W= acosh exp > 24
Y A 11— exp — a2 (25)
r PoT )

The asymptotic form for narrow strips is:

wl wl/
h 4 ah

The complete form for the direct or reverse transforma-
tion is exact so it survives the transition region in either
direction between the extremes of wide and narrow strip.

As a matter of passing interest, the shapes diagramed
(8=1/16 circle) give:

R’'=377/4Vk and R"=377/2Vk in a dielectric (k).

The second term from the wide extreme is particularly
interesting because it gives the interaction between the
opposite edges of the strip. This effect becomes apparent
if (22) is rearranged as follows:

1{w 1 w’ 1
5(—}74-;’- In 16)—(7*’; In 16)

«1.

(26)

1

~ 3, SXP —aw'/hx---. (27)

The last term shown is the second term of the series, the
departure from 1/2 the effective width indicated in Fig.
1(b). This is the basis for the interaction mentioned in
Appendix B.

The second term from the narrow extreme is interesting,
especially for comparison with just one plane [3]. The first
approximation for the extreme is:

oLy J6h

=32 B Teh

= exp —2ur”.

(28)

One step inward (r'=r"/2) gives the second approxima-
tion:

w4 aw 4 w” T w”
—h——;aCOShCXp—i*h——-; ’IT—h—‘ (1+—1—2-'—h—|" )
= %—(exp 27rr’)(1 +§ exp—4ar'+---
,_ 60 16A a? { w\?
R —V—E_[ln P m( h) } (30)

In free space (k=1) the second term is (w’'/h)*x3.1 €. In
comparison with just one plane, this term is greater (in the
ratio #2/6=1.64) and its associated wave resistance is
smaller (by 27 §). The greater second term could have
been evaluated by summing the series of images of the
pair of small wires that is equivalent to a thin strip [3].
Note that 72/6={(2)=31/n%
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Fig. 8. Flow chart of binary stepping.

For either analysis or synthesis, a practical explicit
algorithm may be based on a prescribed number of binary
steps from either extreme. The one here proposed is based
on 4 steps inward from the wide extreme, for these rea-
sons:

a) the “wide” formula is simpler (free of In or exp
functions of the shape ratio);

b) there is a practical lower bound of the width dimen-
sion, below which there is no interest in very close
approximation for a thin strip;

c) the set of 4 steps covers the range of the graphs
(w/h>0.1) with very small relative error (<1076 of
R) for use in checking approximate formulas.

The “wide” formula is noted here for use in this algo-
rithm:

w /b= 1/2r’—% In 16=377/2R'Vk —% In16 (31)

377/2Vk

R’'= I
W/h+—7; In 16

(32)

in which
% In 16=0.882 542.

Here the wave resistance of free space is taken to be 377 £
as a reference for very close approximation.

Fig. 8 is a flow chart of the following procedures for
analysis and synthesis. The coordinates are those of Figs.
2 and 3.

For analysis, use this procedure:

a) step up the width ratio w/h by (25) 4 times to get
w /h;

b) compute R'= R /16 by (32);

¢) multiply by 16 to get R.

For synthesis, use this procedure:

a) divide R by 16 to get R’;
b) from R’, compute w'/h by (31);
c) step down the width by (22) 4 times to get w/h.

Binary stepping is inherently a special case of the Gauss
transformation in the iterative evaluation of an elliptical
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integral by stepping from either extreme. In general, un-
equal steps are involved. Binary stepping is a peculiarity
of the ratio K’/ K, which is related to the subject config-
uration. Binary stepping is seldom described [11]. Its de-
rivation by inversions is peculiar to this configuration.

APPENDIX B
WIDE RECTANGULAR CROSS SECTION

A wide strip between parallel planes has its two edges
isolated to such a degree that their local effects have little
interaction. This offers a major simplification relative to a
strip near a single plane. A useful approximation is ob-
tained from an exact analysis of a very wide strip, ignor-
ing interaction between the edges.

Referring to one edge of the strip in Fig. 1(a), a conven-
tional analysis by conformal mapping can yield the edge
adjustment for an equivalent thin strip as in Fig. 1(b).
Equivalence is based on equal capacitance, inductance
and wave resistance (R) of perfect conductors and the
same homogeneous dielectric (k). The thickness (¢) of the
actual width (w) is replaced by an extra width (Aw) of the
equivalent thin strip (W' =w+Aw).

The height (4) is the separation between the strip and
either plane. It is held the same for two reasons:

a) in practice, it may be the thickness of a dielectric
sheet;

b) in theory, it imposes a fundamental limitation on the
reduction of the magnetic loss PF.

This rule may cause some confusion in the difference of
spacing between the parallel planes in the different equiv-
alent forms. Some such confusion cannot be avoided.

The edge adjustment in the limiting case of a “wide”
strip is formulated as follows [10]:

Aw 1 4h\  4h t
T—;[In(l*——f—)-ﬁ-——;ln(l-&-ﬂ)} 41)

In the limit of a thin strip (z/h—0):

A—W=l{1n(1+ﬁ)+1}=l 1ne(1+ﬂ). (42)
t T t T t
This is the “wide” term in formula (12), (13). It is an
approximation for moderate thickness (z/h<1).

The isolation between the two edges is measured by the
ratio exp— 7w/ h in the space between the strip and either
plane. The interaction is proportional to this ratio and the
factors of field distortion at the respective edges.

For a thin strip, the first-order interaction decreases the
effective width by the amount

27

In the intermediate shape (w=h), this amount is 0.007 A,
so the relative effect is a small fraction (about 0.004 of R).
Thickness decreases the distortion at the edges, and also
increases the effective width, so the relative effect is still
less.
Taking into account the complete width adjustment (41)
and the first-order interaction (27), a very close approxi-

exp —aw/h. (43)
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mation for a “wide” strip is obtained.

R= 188.5
Vk
. 1
w4 t t 4h 1 w
7['4';;[1112(14‘@‘)"'4—"— ln(1+-—;—)——8— €xXp “‘77—h-
(44)

The relative error is < 0.002 if w/h>1, and increases
slowly for lesser width. This formula for analysis for a
“wide” strip is closest for comparison with (4) and (12)
which cover the entire range of shape ratio. In particular,
it is closest for computation of P, which is sensitive to the
derivative.

The square cross section is a special case susceptive of
analysis (but not of explicit synthesis) from formula (41)
for the width adjustment. The interaction of the edges is
small enough that a close approximation is obtained (rela-
tive error < 0.002 of R) for any width exceeding that
shown in Fig. 5 (w/h=1). For any lesser width, compute
the circular cross section and then apply the applicable
one of these rules:

a) divide the width by 1.18 or
b) increase R by 10 £.

APPENDIX C
Exact CoMPUTATION BY CONFORMAL MAPPING

As in the preceding article [3] a complete computation
by conformal mapping offers a direct evaluation of some
examples without restriction as to shape of cross section
(w/h,t/h). 1t is needed for the effect of thickness (in
terms of ¢/h and/or t/w). The examples are useful for
verification of approximate formulas, especially in the
range of transition between the extremes which are closely
approximated by simple formulas. Here again, the algo-
rithm is numerical integration of the space gradient. It is
elementary in contrast with elliptic integrals which might
be adapted to this configuration. It does not offer an
explicit formulation. Here, however, the primary consider-
ation is the effect of thickness on the width of an equiv-
alent thin strip (for equal R).

Fig. 9(a) shows the contour in space, with identification
of the singular points in the upper half-plane (on coordi-
nates z = x+jy). Fig. 9(b) is a graph of the space gradient
on the boundaries as mapped on a straight line (coordi-
nate u#). The mapping has quadrantal symmetry, one
quadrant being included in the graph. All space around
the strip between planes (a) is mapped on all space around
the coplanar strip in a gap in one plane (b).

The space gradient is formulated by inspection, as

follows:
2 1—u3 | u?—u?
z'=|0z/du|= 50
192/3u '1—142 \/1——14,2 u?—ul (50)

Only the area ratios are significant, so the scales can be
arbitrarily chosen.
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Fig. 9. Conformal mapping of the cross section of the strip line. (a)
Contour in space. (b) Space Q radient. (Each area=one dimension on
the contour in space.)

The constant coefficients are chosen to give a unit pole
(o0) at w==*1. This translates to a step of j= in integra-
tion, which makes hA+¢/2=a on the space contour.
Therefore:

/ m represents Y = 2
W/ Iep h+t/2 2h/wHijw
y ot 1

T ICPTSNS 2 T h/1+1)2

h 2
h+t/2 2+4t/h’

h/m represents

In the center (at u=0):

u
zg=2—" <2-Ll<a. 51
O Tu V1-w? ) Gy
For comparison with a thin strip (1—0; u;—u,):
2
z'= z/a=2. 52
1 _ u2 0 ( )
This is susceptible of simple analytic integration:
1+
7w /h=w /2=In — 2 =2atanhu,  (53)
2 1—-u,
_ s 1—exp —w/2 2
uy,=tanh w' /4= [T exp —w/2 =l-—

1+ exp %w’/h .

(54)

This is an explicit reversible formula relating the thin-strip
width ratio (w’/h) to the coplanar-strip width ratio (u,).

The numerical integration of the area (¢) is complicated

by the half-pole (Voo ) at one bound. Some of the com-
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Fig. 10. Numerical integration near one bound which is a half-pole.

mon rules fail because they include the end point. Taking
the midpoint of each interval, as shown in Fig. 10, this
defect is avoided, but a large error remains in the area of
the last interval. The relative error of the sum is of the
order of 1/ V4n for any number of (n) of intervals, so
there is slow convergence with increasing n. If the area of
the end interval is multiplied by V2, the residual error
becomes proportional to 1/s3/2, tripling the rate of con-
vergence. The ordinary error from curvature is propor-
tional to 1/n° The latter converges more rapidly so the
former may be the dominant component of residual error.

A further refinement at the half-pole is to take the 2/3
point instead of the midpoint, this being the centroid of
the area in the interval. For this point, the multiplying

factor becomes V4/3 .

In either case, a still further refinement is provided by a
slightly larger factor (1,/0.868 for the 2/3 point).

The opposite discontinuity (a half-zero V0 ) may ap-
pear at the other bound, as in Fig. 10. The midpoint area
is slightly too great, so it may be multiplied by V8/9 (or
0.94) as a first-order correction.

If the width of the thickness area (u,— u,) is much less
than the other intervals (2u,, 1 — u,), there is a simple rule
based on one midpoint, as indicated in Fig. 10. The
average is simply = /2 times the midpoint.

A variety of examples have been computed by numeri-
cal integration according to Fig. 9. Each example may be
based on a specified value of w’/h, for which R, can be
computed exactly by Appendix A or approximately by
(4). This value of w’/h determines u,. The thickness ratio
t/h would then determine u,, but there is no close explicit
formula. Instead, a target value ¢ /h may be specified,
from which an approximate value of u; can be computed
by this formula:

B 1—u2
h/t+1/2—u,’

The most significant ratio from this exercise is Aw/?,
which is of the order of unity and is weakly dependent on
the thickness ratio (#/h) and the width ratio (w/h or
w’/ h). It is a small difference so its close approximation is
an achievement.

The integration of each area may be performed with an
interval 1/8 the width of the thickness area shown in Fig.
10. This interval leaves a relative error < 0.01 of Aw/¢

(55)

U =u,
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for the widest cases and much less for most cases. Its
occurrence and sense are such that it does not cause an
excess over the error tolerance stated for (12), (13) in
comparison therewith.

The usefulness of numerical integration decreases with
greater width because u; and u, approach the pole at
u=1. This is found to decrease the rate of convergence
with smaller intervals.
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Characteristic Impedance of a Rectangular
Coaxial Line with Offset Inner Conductor
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Abstract—The singular-integral-equation technique is used to derive
the capacitance and, hence, characteristic impedance of a r ar
coaxial line with a zero-thickness inner conductor. The position of the
inner conducter is arbitrary, but its orientation is assumed to be parallel to
the top and bottom walls of the outer conductor. Simple yet very accurate
formulas for the capacitance and characteristic impedance are found in
terms of complete elliptic integrals.
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I. INTRODUCTION

HE CROSS SECTION of the rectangular transmis-

sion line analyzed in this paper is shown in Fig. 1.
The zero-thickness inner conductor is arbitrarily situated
but is parallel to the x axis. Both conductors are perfectly
conducting, and the medium between the two conductors
is a homogeneous dielectric.

This type of transmission line has found use in some
EMI measurement systems [1] as a transducer for cou-
pling EM energy from the equipment under test (EUT)
into the TEM mode of the transmission line. The EUT is
usually located between the inner and outer conductors

0018-9480/78 /1100-0876$00.75 ©1978 IEEE



