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Transmission-Line Properties of a Strip Line
Between Parallel Planes
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Abstract-The subject is a strip line sandwiched in dielectric between

parallel planes (eommonfy termed “stripfine”). In the manner of the
author’s earlier papers relating to a different type (1964, 1%5, 1977), alf
the significant properties are formulated in expficit form for practical

applications. This may mean synthesis and/or anafysis. Each formula is a

close approximation for afl shape ratios, obtained by a gradual transition
between theoretical forma for the extremes of narrow and wide strips. The
effect of thickness is formrdated to a second-order approximation, Then
the result is subjected to numerical differentiation for simple evafnation of
the magnetic-lm power factor from the sfdn depth.

The famifiar derivation for a thin strip (in terms of eUfptic integrals
K’/K) is obtained by a simple afgoritinn of binary stepping with no

reffance on bbles. Tfds is susceptible of any degree of approximation in

closed form and is reversible for synthesis or amdysis. It is used to verify a
simple empiricaf formnfa which is more convenient for differentiation.

In the transition region between the extremes of narrow and wide stripa,

the effect of thicfmess is computed by conformal mapping and numerical
integration (ii place of elfiptfc integrals). From this reference, a simple

empirical formrda is verMed.

GraplEJ are gfveu for practical pnrpmes, showing the wave resistance and

magnetic loss for a wide range of shape and dielectric. For numerical
reading, the formnhw are suited for programming on a smafl digitaf

calculator.

I. INTRODUCTION

o

NE FORM of strip line is suited for the highest

degree of refinement in a printed circuit. It is the

familiar symmetrical type made of a printed strip sand-

wiched in homogeneous dielectric between parallel planes.

The symmetry and the planes provide complete shielding.

It is distinguished from the strip near a single plane

(termed “microstrip”) which is half-shielded.

The purpose of this article is to present some improved

formulas and graphs similar to those recently published

for the strip near one plane [3]. They include not only

wave resistance (so-called “characteristic impedance”) but

also the losses. The effect of strip thickness is simply

formulated to enable the evaluation of magnetic loss.

In the vernacular, this type of line is termed “stripline,”
a term which is not distinctive.

Because the subject line is symmetrical and is imbedded

in homogeneous dielectric, its properties can be stated in

simpler form. They are presented in formulas and charts

which are complete for a strip of any width and moderate

thickness.

As in the preceding article [3], the principal component

of dissipation is usually the magnetic power factor (PF or

1/Q). It is strongly dependent on the strip thickness. This
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loss PF can be evaluated with the aid of the

“incremental-inductance rule” published by the author in

1942. Other authors have applied this rule to the subject

line [7] but the present approach offers some simplifica-

tion in computation.

As before, we shall consider only the lowest mode of

wave propagation in the line.

After a list of symbols, the configuration will be defined

and the scope of this article will be indicated.

11. SYMBOLS

MKS rationalized units (meters, ohms, etc.)

k = dielectric constant of sheet of material sep-

arating the strip and the ground plane.

RC =377 = 120r = wave resistance of a square area

of free space or air.

R = wave resistance of the transmission line

formed by the strip between parallel ground

planes (of perfect conductor) filled with di-

electric (k).

Rl = R without dielectric (k= 1).

R8 = R, subject to skin depth (8) in real conductor.

R/Rl = l/V% = speed ratio in dielectric (k) relative

to free space or air.

r = fi R/Rc = normalized R.

= width of strip conductor.

; = height (separation) of strip from each ground

plane.

t = thickness of strip conductor.
! = width of an equivalent thin strip.

:W = W’–W = width adjustment for thickness.

6 = skin depth in the conductor.

P =1/ Q= magnetic power factor (PF) of strip

line.

P =p + 8/h =ph/8 =normalized p.

e =2.7 18= base of natural logarithms.

exp x = e x = natural exponential function.

in x = Iogex = natural logarithm.

acosh x= anticosh x = cosh– lX.

atanh x= antitanh x = tanh– lX.

III. A STRIP LINE BETWEEN Two PARALLEL

PLANES

Fig. l(a) shows the cross section of the subject line. The

“practical” parameters correspond to the preceding article

[3]. They are the wave resistance (R) and the dimensions

(w, h, i). Here again the thickness is featured, and the
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Fig. 1. A. strip line between parallel planes. (a) Rectangular cross
section. (b) Thin strip of equivalent width.

equivalence between a practical strip and a wider theoreti-

cal thin strip (perfect conductor with thickness approach-

ing zero). Fig. 1(b) shows the latter. The equivalence is

described in terms of the width adjustment (Aw).

Of particular interest is the well-known wide-strip ap-

proximation indicated in Fig. l(b). The edge effect of a

wide thin strip between parallel planes is highly localized

so it can be described by one number. This effect is

designated by

w“= w’+Aw’= w’+ ~ in 16= w’+0.88h.
T

(1)

This greater width would give the correct wave resistance

(R) on the assumption of uniform field within this width

and zero outside. The effective width is less to the extent

of interaction between the field distortions at the opposite

edges. This interaction is small if the width exceeds the

height (w/h > 1) and will be expressed as another term.

For evaluation of the magnetic PF, the skin effect is

indicated in dashed lines. These boundaries are re,cessed

by 1/2 the skin depth (8/2) so they indicate the actual

center of current. The actual boundary is the theoretical

current center in a perfect conductor. The change between

one and the other is involved in the computation of the

magnetic PF. It is assumed that all conductive boundaries

are nonmagnetic and have equal conductivity and skin

depth.

IV. SCOPE

As in the preceding article [3], the thrust of this article is

to enable explicit synthesis of a line to meet some specifi-

cations. The wave resistance (R) is related to the dielectric

constant (k) and the shape. On the other handl, the mag-

netic PF can be decreased by increasing the size, while the

shape has a lesser effect. The PF is usually al tolerance

rather than a requisite. The wave-speed ratio is taken not

to be specified, but is determined by the chc)ice of the

dielectric.

Some graphs are introduced here, for reference in vari-

ous sections. They present the relations needed for the

purposes of practical design, and can be read chose

enough for ordinary purposes. The formulas to be given

are intended as an alternative to the graphs, and also to

give further insight into the relations. The formulas are

designed for programming in a small digital calculator

such as the HP-25 or HP-97.

Fig. 2 is a graph of the wave reSkt231nCeof a thin strip. It

is made from the algorithm of binary stepping. The wave-

speed ratio (relative to air or free space) for any width

ratio is equal to the ratio of wave resistance with and

without dielectric (R/R 1).

Fig. 3 is a graph of the thickness effect orl the wave

resistance without dielectric. It is a small effect with

respect to wave resistance but has a greater effect on the

magnetic PF. This is generally similar to the first-order

effect of thickness as previously stated [3] but is refined

and extended to include the second-order effect in some

degree.

Fig. 4 is a graph of the normalized magnetic PF (P =p

= 6/h) as evaluated from the thickness effect. The mag-

netic PF is independent of the dielectric and its normali-

zed value is independent of the size. The thickness

parameter (t/h) is chosen as being a property of the

laminate, specifically the thickness ratio of the conductive

strip and the dielectric sheet.

New formulas are here presented in the main text

without derivation. Most of them are empiricad formulas

providing a gradual transition between narrow and wide

extremes. These are first tested against close approxima-

tions for overlapping narrow and wide ranges. They are

further tested against a set of examples computed by

conformal mapping, which cover the transition regjon

between the narrow and wide ranges. Some clerivations,

not previously available, are given in the Appendixes.

Special emphasis is placed on some formulas which are

“reversible” in the sense that a formula can be expressed

explicitly in a simple form for either analysis or synthesis.

V. A T~N STRIP

As in the preceding article [3], simple “reversible” for-

mulas are given for a thin strip of any width. By this is

meant that an explicit formula for either analysis or

synthesis can be converted to an explicit formula for the

other. This conversion is permitted no complication be-

yond the solution of a quadratic equation. These formulas

are empirical in the sense that they must be tested against
derived formulas that are exact or at least give a close

approximation in some range of shape.
The simple explicit formula is here shown first for

synthesis and then for analysis. The normalized resistance
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Fig. 2. The wave resistance of a thin strip in &electric between paraflel planes.
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Fig. 3. The wave resistance of a strip without dielectric, showing the effect of thickness.

r= V% R/Rc = V% R/377; R = rRC/V% =377r/fi

{
R= ~ in 1 + ~(16h/nw’)[(16h/~w’)

(2) fi
is introduced for convenience.

16 V(exp 4mr– 1)+ 1.568
w’/h= ;

(exp 4mr - 1)

.,

+j(16h/mv’)2+6.27 ]). (4)

(3)
The relative error is <0.005 of R for w’/h <20.
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Fig. 4. The magnetic power factor of a strip, showing the effect of thickness.

This formula is based on the “narrow” approximation.

The first term is retained. The second term is retained in

form and approximately in amount. The latter is based on

the two-wire approximation for a thin strip, as described

in [3]. However, the form is arranged to approximate also

the first term of the “wide” extreme, in respect to its slope

and its zero for infinite width. The second term of the

“wide” is retained in form but not in amount. The two

constants are a slight departure from the following theore-

tical va,lues for the “wide” extreme, to give closer ap-

proximation over the range of most interest:

1.568 instead of 1.522= (n2/8)2

6.27 instead of 6.088= (T2/4)2.

From another viewpoint, the two constants are a slight

departure from the following theoretical second terms for

the “na,rrow” extreme:

1.568 instead of 1.667=5/3

6.27 instead of 6.667=20/3.

It is notable that the above forms are close to a simple

(reversible) formula with these theoretical constants and

the following (rather close) bounds for narrow and wide

extremes:

16 exp 2m 8/r
<w’/h< ~– (5)

;; exp 4m – 1 = sinh 2m sinh 2wr “

This approximate formula is tested against the exact
formula which is derived by conformal mapping. The

latter is related to the ratio K’/K of elliptic integrals, and

can be evaluated to any degree of approximation by the

method of binary stepping, described in Appendix A.

In Appendix B, there is given the asymptotic formula

for “wide” strips of any thickness. It is a close approxima-

tion if w/h> 1. For wide strips (especially if the thickness

\ rrT

L_--_-Jl_4
Fig. 5. A wire of square or inscribed circular cross section between

parallel planes.

is small) it is closer than the numerical integration with a

moderate number of intervals.

VI. SQUARE OR CIRCULAR (;ROSS SficmoN

As an extreme departure from a thin strip, a square or

circular cross section is considered. Some peculiarities of

these shapes are presented in the preceding article [3]. Fig.

5 shows the dimensions between parallel planes, with

equal width and thickness (w= t).As in the case of the

rectangular cross section, the “height” (h) is the separa-

tion of the inner conductor from either plane, SC) the

spacing between the planes is 2h + t. This convention is

favored, because the separation places a lower bound on

the magnetic PF.

Here there is no exact formula for all shape mtios.

There is a “narrow” formula for square or circular, but
that does not give the peculiar variation of the PF with

shape. Appendix B gives a derivation for a “wide” square

cross section. The author’s 1955 article [9] gives a dwiva-

tion for a circular cross section over the entire range of

shape ratio.

For the square cross section, a simple “reversible” for-

mula has not been found for a close approximation over
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the entire range of shape ratio. As will be seen, the more

general rectangular cross section yields an explicit formula

for analysis, which includes the square. That is what is

needed for evaluating the magnetic PF. Synthesis for the

square still requires computation by trial or reading from

a graph such as Fig. 3.

For the circular cross section, the following “reversible”

formula has been designed and tested.

2
w/h=

[ 1

1/4
(6)

1+
( exp 8m- 1)2 _ ~

2.628 ( exp Sm - 1) +2

R=-# in [1+1.314g+~~] (7)

in which

g=(l+2h/w)4–l

(4/7)4 =2.628 = 2(1.314).

The relative error is <0,005 of R.

For each extreme of “narrow” and “wide,” this formula

matches the first term, while the second term is retained in

form and approximately in amount. The result is a re-

markably close approximation in the transition between

extremes.

If the diameter occupies less than one-half the space

between the planes, the following “narrow” formulas are

simpler and very close (relative error is < 0.005 of R).

Square:

1
w/h=

0.4634 exp 2z-r – 0.5
(8)

4/7T ~+2h/w)= ~
R=~ln~(

60
— In 1.079(1 +2h/w).

VZ”

(9)

Circular:

“h= (T/8) exp12mr - 1/2
(10)

R=60 in ~(l+2h/w)=601n (l+2h/w)+ 14.49.

(11)

VII. STRIP THICKNESS AND THE Loss POWER
FACTOR

The approach here is the same as in the preceding

article [3]. Appendix B herein gives the effect of any

thickness for a “wide” strip between parallel planes. The

effect for a “narrow” strip is the same for one or two

planes.

The present strip between planes is susceptible of sim-

pler evaluation by conformal mapping and numerical

integration, as appears in Appendix C. Therefore, a set of

numerical examples has been computed to cover a wide

range of shape ratios, especially in the transition region

between narrow and wide extremes. From these examples,

the previous formulas for the effect of thickness have been

refined to give closer approximation for moderate thick-

ness.

Here one should note the basis for the width adjust-

ment, as shown in Fig. 1. The strip thickness is associated

with greater separation of the parallel planes in order to

keep the same “height” between the strip and either plane.

This relation is reflected in the exponent (m) of the

“narrow” term in the formulas to be given. Also the

“wide” term is modified to give closer approximation for

greater thickness.

Each formula for width adjustment is presented here, as

before, in terms of the actual width (w) or the equivalent-

thin-strip width (M7’ = w + Aw).

Aw 1 In—. —

‘ “ -lJ* ‘*2)

or

‘ln~* ’13)

in which

2 6.—
‘= l+t/3h 3+t/h”

The relative error is <0.015.

This adjustment enables a width conversion either way

between strips with or without thickness. Its small relative

error makes a much smaller contribution to the relative

error of effective width and R. It does relate directly to

the magnetic PF in view of the dependence of losses on

the thickness. As before, the form of this formula gives

asymptotic approximation for narrow and wide extremes,

and a remarkably close approximation through the transi-

tion therebetween.

For loss computation, the actual width and thickness

(w, t) are converted to the width of an equivalent thin strip

(w’ = w+ Aw). Then the thin-strip formula (Rl of w’) can

be used for differentiation with respect to the actual

dimensions (w,h, t),,

As indicated in Fig. 1, each dimension is incremented

by + 8 and the same formula is used again to obtain R8.

Then the (small) loss PF is computed by the incremental-

inductance rule:

R6– R1
p= R =l– Rl/R8= lnR6/Rl<<l. (14)

8

Here again, a normalized form for loss PF is used,

which gives the effect of shape, independent of the size,

frequency, and conductor material. It is normalized to the

height (h).

P=p=(8/h)=p(h/8); p = P(8/h). (15)

The reference (ii/h) is the nominal PF of a very wide

strip.

In computing the normalized PF (P), the value of skin

depth is immaterial if it is sufficiently small to approach

the limiting behavior of the skin effect (which is usually
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present). Also it must not approach the sensitivity of the

computer, In a computer giving 9 decimal places, a fair

compromise is: O/h = 0.0001. Then the skin effect is well

represented if all dimension ratios exceed 0.001.

For evaluation of a resonator made of strip line, the loss

PF (or dissipation factor or 1/Q) is usually the lmost

significant factor. The wave 1? is incidentally relevant in

the circuit application of the resonator. The loss PF of the

magnetic field is evaluated by the simplest formulas (Rl

and Aw without dielectric). For any shape, the value of P

enables a computation of the size of the cross secticm to

realize a value of p:

h= P8/p=P8Q. (16)

The graphs in Fig. 4 show the loss PF in terms of P for

a wide range of shapes. The common reference is the

height (h)l and the thickness ratio (t/h) because they may

be fixed by a dielectric sheet and a conductive sheet

bonded thereto.

Referring to Fig. 4, the comments in the preceding

article [3] are generally still applicable. Here are some

comparisons of the present line with that strip near one

plane, The magnetic loss PF is greater for the same

specified dimensions because there is less space occupied

by the field around the strip. Different commenti are

applicable to the opposite extremes of width.

A “narrow” strip has the same resistance by [8] but

lesser reactance as measured by the reduction of wave

resistance in free space by this amount:

60 in T/2 =27.09 Q. (17)

A “wide” strip approaches 1/2 the resistance and reac-

tance, but there is less volume occupied by the field

beyond either edge of the strip. This reduces the ratio of

reactance over resistance so the PF is increased, as ap-

pears on Fig. 4, Typically the increase is around 1/5. For

a “wide” strip, the same levels are approached.

The greater PF, with the complete shielding provided

by the two planes, may not impose a net disadvantage.

The space above the upper plane can be utilized without

restriction. Without the upper plane, more space ~above

the strip must be kept clear to avoid further losses in the

nearby field. One component of such losses is the radia-

tion that is inherent with incomplete shielding.

The previous article gives procedures for computation

for analysis or synthesis. The present model is much

simpler because the effective dielectric constant is that of

the material, which is specified and determines the speed

ratio.

a) For synthesis from graphs:

(i) specify R and k, h, t; R,=RW%;
(ii) read w/h from ~, on Fig. 3;

(iii) state skin depth;

(iv) read P on Fig. 4; p = Pa/h.

b) For synthesis from formulas:

(i) specify R and k, h, t; Rl=R@ ;

(ii) compute w’/h by (3);

(iii) compute Aw/t by (13); w= w’ –Aw.

871

c) For analysis from graphs:

(i) specify k, w, h, t;

(ii) read R, on Fig. 3: R=R,/~ ;

(iii) (iv) same as a).

d) For analysis from formulas:

(i) specify k, w, h, t;

(ii) compute Aw/t by (12); w’= w +Aw;

(iii) compute R by (4);

(iv) state skin depth;

(v) compute PF by (14).

The PF computed as above, from formulas (4), (’12)

for all shape ratios, has been checkedl against the “wide”

formula (44), which is much closer if w/h> “1. For all

thicknesses up to the square cross section, it is concludledl

that the above (d) comes within 0.05 of PF, or witlnin

0.015 of PF if t/h<O.5.

VIII. CONCLUSION

The transmission-line properties of a strip between

parallel planes are evaluated in simple formulas., each one

adapted for all shape ratios. The presence of al homoge-

neous dielectric filling has a simple effect on the wave

resistance and speed ratio but no effect on the magnetic

PF which is usually the principal component of losses.

The latter is stated from the viewpoint of analysis, which

is usually what is needed.

The advance over previous publications appears mainly

in two areas:

a) a relation is expressed explicitly by a single simple

formula for the entire range of shape ratio;

b) the width adjustment for thickness is formulated and

used for evaluation of magnetic loss.

Each formula is an empirical relation obtained by design-

ing a gradual transition between known simple formulas

for both extremes of narrow and wide shapes.

All formulas are designed for ease of programming an a

small calculator such as the HP-25 or HP-97. Piirticularly,

the digital calculator enables the numerical differention

(for loss evaluation) which is here used to realize a great

simplification. While beyond the scolpe of this article, the

writer would welcome inquiries relating to the programs

for the HP-25 or HP-97, some of which may be available

on request.

In general, the subject line presents problems of evallua-

tion which are simpler than those of a strip near one

plane. Some of the-approaches that were de~eloped

the other form are found interesting and helpful for

subject line, however simpler.

APPENDIX A

EXACT COMPUTATION OF A THIN STRIP BY EhNARY

STEPPING

for

the

For the extreme of either a narrow strip or a wide strip,

a simple formula is known which converges to any de,gree

of approximation. A simple iterative algorithm of exact

transformations is available for analysis or synthesis of
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any shape ratio in the intermediate range. The algorithm

involves binary stepping of the wave resistance and a

corresponding (nonbinary) stepping of the strip width.

Specifically, one inward step gives the second term of a

converging series, and each further step gives another

term. The transformation for each step is made by the

same simple formula, which is reversible for stepping in

either sense, and is applicable to analysis or synthesis.

The binary stepping will be derived here by a simple

pair of inversions in conformal mapping. The stepping is

accomplished without reference to the actual relation be-

tween the shape ratio and the wave resistance. Then the

latter is introduced to establish one end of the “staircase.”

Fig. 6 shows a pair of cases differing by a binary step of

wave resistance (R). Fig. 7 shows the pair of inversions by

which the corresponding step of shape ratio (w/h) is

derived. The latter will appear in “reversible” form adapt-

able for analysis or synthesis.

The symbols used in this exercise are different in these

respects:

R‘, R” = the (lesser, greater) values of wave resistance

(2R’ = R“).

w’, w“ = the corresponding (greater, lesser) values of

strip width (W’ > 2w”).
h = m= reference height.

e = half-angle of gap in pair of arcs of a circle.

Fig. 6(a) shows the cross section of any one width

(w’/h) of a thin strip between parallel planes. Fig. 6(b)

shows the strip of the lesser width ( w“/h) to be derived.

The wave resistance is doubled (R’ X 2 = R“).

Fig. 6(c) shows the mapping of one strip onto the upper

and lower half-planes of a balanced strip line which

therefore has double the resistance. The mapping function

is t ~ as indicated. The lines of the parallel planes
are folded out to form a single line and the strip is imaged

to form a balanced pair.

Fig. 6(d) shows the mapping of the other strip and its

shields onto a vertical line by the exponential function as

indicated. The shield becomes the lower half of an infinite

line. The wave resistance is unchanged.

Fig. 7 shows the inversion of the strips of different

widths onto the same arcs of a circle, thereby establishing

the relations for 2R’ = R”. The arcs are symmetrical and

are separated by an angle (26) on the circle.
Comparing Figs. 6(c) and 7(a):

tan e= exp – w’/4.

Then comparing Figs. 6(d) and 7(b):

exp w“/2 = l/tan 29 + tan 2/3

exp – w“/2 tan 20

exp w“= (l/sin 20)2

(sin 20)2 = exp – w“; (COS2/3)2=1 – exp – w“

( )
(tan 2f3)2= exp j,,_ ~ = ~~p~j~2 2

=(1 /sinh w’/4)z

&
2

1 11----

~

2\

-h -———D ——— h=~ _—— h

R’ R“=2R’
w,-—
2

(a) (b)

/’

//

4-\\\=.

\ ~e-”= exg w’14

i’
exp– w’/4

-.,
\ T/2

\

Iu’ \
/“

\
/

) /.—

/
R’ / f’

/’ \
/

/“
\
\

\ \

/
exp w“12

/:-””’2

\

R“ \
\

17

I
/

//’

(c) (d)

Fig. 6. Description of strip lines of related widths.

Iton 0

,-—,
\//’ ,’(,

an 8

{‘c1 :-- ---

\ ;’$’\\\ / x,
-1-’

I

1

/ton 29

ton 29

(a)

Fig. 7. Tbe circular arcs related to balanced and unbalanced strip lines
by inversion.

exp w“ = 1 + (sinh w’/4)2 = (cosh w’/4)2

exp w“/2 = cosh w’/4

w“ = 2 In cosh w’/4

w“ 2—. —
h~

in cosh ~ ~ (21)

lW’ 21n 2———— —
‘2h T

(22)

l+exp–~~”

This is the transformation for double resistance. The

second form is preferred for understanding and computa-
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tion. The first term is 1/2 the width, which is the principal

term for wide strips. The two terms have a small dif-

ference fcm narrow strips, giving the asymptotic form:

One-half the resistance can be obtained

transformation, which is easily stated from

w’ 4
~ acosh exp ~ ~—.—

h

(23)

by the reverse

(21):

(24)

The asymptotic form for narrow strips is:

(26)

The complete form for the direct or reverse transfcmna-

tion is exact so it survives the transition region in either

direction between the extremes of wide and narrow strip.

As a matter of passing interest, the shapes diagramed

(6= 1/16 circle) give:

R’ =3T7/4fi and R“ = 377/2@ in a dielectric (k).

The second term from the wide extreme is particularly

interesting because it gives the interaction between the

opposite edges of the strip. This effect becomes apparent

if (22) is rearranged as follows:

— &exp–~w’’/h, .,.. (27)

The last term shown is the second term of the series, the

departure from 1/2 the effective width indicated in Fig.

l(b). This is the basis for the interaction mentioned in

Appendix B.

The second term from the narrow extreme is interesting,

especial~y for comparison with just one plane [3]. The first

approximation for the extreme is:

1 16h mv”
r“=-ln-

2T ITW”
— = exp —2m”.
16h

(28)

One step inward (r’ = r“/2) gives the second approxima-

tion:

w’ 4 (!

C(

4 “
ft

h
—=; acoshexpg K=z r%

2h l+ fi%-F ””” )

(
=~(exp2 m’) l+: exp–4#+”.. )

[

__~(+..].Rf– 60 In 16h
Vz %W’

(30)

In free space (k= 1) the second term is (w’/ h)2 x 3.1 !2. In

comparison with just one plane, this term is greater ((in the

ratio n2/6 = 1.64) and its associated wave resistance is

smaller (by 27 Q). The greater second term COUIC1have

been evaluated by summing the series of images of the

pair of small wires that is equivalent to a thin strip [3].

Note that n2/6 = ((2) = Z l/n2.
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Fig. 8. Flow chart of binary stepping.

For either analysis or synthesis, a practical explicit

algorithm may be based on a prescribed number of binary

steps from either extreme. The one here proposed is basedl

on 4 steps inward from the wide extreme, for these rea-

sons:

a) the “wide” formula is simpler (free of In or exp

functions of the shape ratio);

b) there is a practical lower bound of the width dimen

sion, below which there is no interest in very close

approximation for a thin strip;

c) the set of 4 steps covers the range of the graphs

(w/h > 0.1) with very small relative error (< 10-6 of

R) for use in checking approximate formulas.

The “wide” formula is noted here for use in this algo-

rithm:

w’/h= l/2r’– ~ in 16=377 /2R’~ – ~ in 16 (31)

R,= 377/2fi
1 (32)

w’/h+ ~ in 16

in which

~ in 16=0.882 542.

Here the wave resistance of free space is taken to be 377 Q

as a reference for very close approximation.

Fig. 8 is a flow chart of the following procedures for

analysis and synthesis. The coordinates are those of Figs.

2 and 3.

For analysis, use this procedure:

a) step up the width ratio w/h

w’/h ;

b) compute R’ = R/16 by (32);

c) multiply by 16 to get R.

For synthesis, use this procedure:

a) divide R by 16 to get R‘;

by (25) 4 times to get

b) from R‘, compute w’/h by (31);

c) step down the width by (22) 4 times to get w/h.

Binary stepping is inherently a special case of the Gauss
transformation in the iterative evaluation of an elli~tical.



874 IEEE TRANSACTIONS ON MICROWAVSTHEORYANDTECHNIQUW,VOL.MTT-26,NO.11,NOVEMBER1978

integral by stepping from either extreme. In general, un-

equal steps are involved. Binary stepping is a peculiarity

of the ratio K’/K, which is related to the subject config-

uration. Binary stepping is seldom described [11]. Its de-

rivation by inversions is peculiar to this configuration.

APPENDIX B

WIDE RECTANGULAR CROSS SECTION

A wide strip between parallel planes has its two edges

isolated to such a degree that their local effects have little

interaction. This offers a major simplification relative to a

strip near a singie plane. A useful approximation is ob-

tained from an exact analysis of a very wide strip, ignor-

ing interaction between the edges.

Referring to one edge of the strip in Fig. l(a), a conven-

tional analysis by conformal mapping can yield the edge

adjustment for an equivalent thin strip as in Fig. l(b).

Equivalence is based on equal capacitance, inductance

and wave resistance (R) of perfect conductors and the

same homogeneous dielectric (k). The thickness (t) of the

actual width (w) is replaced by an extra width (Aw) of the

equivalent thin strip (w’ = w+ Aw).

The height (h) is the separation between the strip and

either plane. It is held the same for two reasons:

a) in practice, it may be the thickness of a dielectric

sheet;

b) in theory, it imposes a fundamental limitation on the

reduction of the magnetic loss PF.

This rule may cause some confusion in the difference of

spacing between the parallel planes in the different equiv-

alent forms. Some such confusion cannot be avoided.

The edge adjustment in the limiting case of a “wide”

strip is formulated as follows [10]:

+= W+3++W’++H’ “’)
In the limit of a thin strip (t/h-+O):

+=:[ln(I++)+l]=+Ine(I++).(42)

This is the “wide” term in formula (12), (13). It is an

approximation for moderate thickness (t/h < 1).
The isolation between the two edges is measured by the

ratio exp – rev/h in the space between the strip and either

plane. The interaction is proportional to this ratio and the

factors of field distortion at the respective edges.

For a thin strip, the first-order interaction decreases the

effective width by the amount

$ exp – row/h. (43)

In the intermediate shape (w= h), this amount is 0.007 h,

so the relative effect is a small fraction (about 0.004 of R).

Thickness decreases the distortion at the edges, and also

increases the effective width, so the relative effect is still

less.

Taking into account the complete width adjustment (41)

and the first-order interaction (27), a very close approxi-

mation for a “wide” strip is obtained.

~= 188.5

v%

(44)

The relative error is < 0.002 if w/h> 1, and increases

slowly for lesser width. This formula for analysis for a

“wide” strip is closest for comparison with (4) and (12)

which cover the entire range of shape ratio. In particular,

it is closest for computation of P, which is sensitive to the

derivative.

The square cross section is a special case susceptive of

analysis (but not of explicit synthesis) from formula (41)

for the width adjustment. The interaction of the edges is

small enough that a close approximation is obtained (rela-

tive error < 0.002 of R) for any width exceeding that

shown in Fig. 5 (w/h= 1). For any lesser width, compute

the circular cross section and then apply the applicable

one of these rules:

a) divide the width by 1.18 or

b) increase R by 10$2.

APPENDIX C

EXACT COMPUTATION BY CONFORMAL MAPPING

As in the preceding article [3] a complete computation

by conformal mapping offers a direct evaluation of some

examples without restriction as to shape of cross section

(w/h, t/h). lt is needed for the effect of thickness (in

terms of t/h and/or t/w). The examples are useful for

verification of approximate formulas, especially in the

range of transition between the extremes which are closely

approximated by simple formulas. Here again, the algo-

rithm is numerical integration of the space gradient. It is

elementary in contrast with elliptic integrals which might

be adapted to this configuration. It does not offer an

explicit formulation. Here, however, the primary consider-

ation is the effect of thickness on the width of an equiv-

alent thin strip (for equal R).
Fig. 9(a) shows the contour in space, with identification

of the singular points in the upper half-plane (on coordi-

nates z = x +Jj). Fig. 9(b) is a graph of the space gradient

on the boundaries as mapped on a straight line (coordi-

nate u). The mapping has quadrantal symmetry, one

quadrant being included in the graph. All space around

the strip between planes (a) is mapped on all space around

the coplanar strip in a gap in one plane (b).
The space gradient is formulated by inspection, as

follows:

2

Ii

l–u: 242– u;
zf=]az/aul = — — —

1–U2 l–u; J _ u; .
(50)

Only the area ratios are significant, so the scales can be

arbitrarily chosen.
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(b)

Fig. 9. Conformal mapping of the cross section of the strip line. (a)
Contour in space, (b) Space Q radient. (Each area= one dimension on
the contour in space.)

The constant coefficients are chosen to give a unit pole

(m) at u= t 1. This translates to a step of j~ in integra-

tion, which makes h + t/2= m on the space contour.

Therefore:
2

w/r represents — =
h +:/2 2h/w+t/w

t 1
t/T represents — =

h+ t/2 h/t+l/2

h/~ represents
h 2

—--=~”h + t/2

In the center (at u= O):

For comparison with a thin strip (t-+O; u1~u2):

2~f = — 2’. =2. (52)
1–U2

This is susceptible of simple analytic integration:

1+U2
~ w’/h= w’/2=ln — = 2 atanh U2

1–U2
(53)

l–exp–w’/2=l _ 2
Uz= tanh w’/4 =

1 + exp – w’/2 1+ exp ~w’/h “

(54)

This is an explicit reversible formula relating the thin-strip

width ratio (w’/h) to the coplanar-strip width ratio (uz).

The numerical integration of the area (t) is complicated

by the half-pole (~) at one bound. Some of the com-

_cfl!
.—

w1’ END AREA

{

,-––_––– ––– (xlkY)

TOTAL AREA ;–––– ‘–

(x lr/2)
u

UI U2
~“

m INTERVALS

Fig. 10. Numerical integration near one bound which is a half-pole.

mon rules fail because they include the end point. Taking

the midpoint of each interval, as shown in Fig. 10, this

defect is avoided, but a large error remains in the area of

the last interval. The relative error of the sum is of the

order of 1/ fi for any number of (n) of intervals, so

there is slow convergence with increasing n. If the area of

the end interval is multiplied by ~ , the residual error

becomes proportional to 1/n312, tripling the ralte of con-

vergence. The ordinary error from curvature is propor-

tional to 1/n2. The latter converges more rapidly so the

former may be the dominant component of residual errc)r.

A further refinement at the half-pole is to take the 2/3

point instead of the midpoint, this being the centroid of

the area in the interval. For this point, the multiplying

factor becomes ~ .

In either case, a still further refinement is provided by a

slightly larger factor (1/0.868 for the 2/3 poin{~.

The opposite discontinuity (a half-zero ~ ) may ap-

pear at the other bound, as in Fig. 10. The midpoint area

is slightly too great, so it may be multiplied by ‘~ (or

0.94) as a first-order correction.

If the width of the thickness area (U2 – UJ is much less

than the other intervals (2uI, 1– U2), there is a simple rule

based on one midpoint, as indicated in Fig. 10. The

average is simply n/2 times the midpoint.

A variety of examples have been computed by numeri-

cal integration according to Fig. 9. Each example may be

based on a specified value of w’/h, for which R, can be

computed exactly by Appendix A or approximately by

(4). This value of w’/h determines U2. The thickness ratio

t/h would then determine Ul, but there is no close explicit

formula. Instead, a target value t’/h may be specified,

from which an approximate value of U1 can be computed

by this formula:

l–u;

‘*=U2– h/t’+ 1/2--u2.
(55)

The most significant ratio from this exercise is Aw/ t,
which is of the order of unity and is weakly dependent on

the thickness ratio (t/h) and the width ratio (w/h or

w’/ h). It is a small difference so its close appro ~imation is

an achievement.

The integration of each area may be performed with an
interval 1/8 the width of the thickness area shown in IFig.

10. This interval leaves a relative error < 0.011 of A w/ t
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for the widest cases and much less for most cases. Its

occurrence and sense are such that it does not cause an

excess over the error tolerance stated for (12), (13) in

comparison therewith.

The usefulness of numerical integration decreases with

greater width because u, and Uz approach the pole at

u= 1. This is found to decrease the rate of convergence

with smaller intervals.
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Characteristic Impedance of a Rectangular
Coaxial Line with Offset Inner Conductor
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Abstract—The singular-integral-equation technique is used to derive I. INTRODUCTION
the capacitance an@ hencej characteristic impedance of a rcdanguk

coaxial fine with a zero-thickness inner conductor. The position of the T HE CROSS SECTION of the rectangular transmis-
inner conductor is arbitrary, but its orientation is assumed to be paraffel to sion line analyzed in this paper is shown in Fig. 1.
the top aud bottom walks of the outer conductor. Simple yet very accurate The zero-thickness inner conductor is arbitrarily situated
forrmdw for the capacitance aud characteristic impedance me fo~d iII but is parallel to the x axis. Both conductors are perfectly
terms of complete elliptic integrals.

conducting, and the medium between the two conductors
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is a homogeneous dielectric.
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